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A theoretical approach is proposed to explain the spectral changes in the X—H stretching
region of hydrogen-bonded crystals. The model proposed here is restricted to a one dimen-
sional crystal. The X~H stretching modes are supposed to be coupled to H-bond vibrations of
lower frequency, and in general the separation of these modes is no longer possible. The
fundamental hamiltonian describing this coupling is derived and formulae for quantities, such
as intensity, bandwidth and center of gravity of the infrared line in the X—H stretching mode
region are calculated.

Es wird eine theoretische Naherung vorgeschlagen, um die Verdnderung im Infrarot-
Spektrum von Kristallen mit Wasserstoff-Bindungen im Bereich der X-H-Léangsschwingun-
gen zu erkliren. Das vorgeschlagene Modell ist eindimensional. Die X~H-Schwingungen sind
mit (X-H...Y)-Lingsschwingungen geringerer Frequenz gekoppelt; die verschiedenen
Schwingungstypen lassen sich i. a. nicht trennen. Der fundamentale Hamiltonoperator, der
die Kopplung beschreibt, wird eingefiihrt, und es werden Groflen wie Intensitit, Bandbreite
und 1. Moment der Spektrallinien der X—H-Schwingungen berechnet.

Nous formulons une proposition théorique afin d’expliquer les changements intervenant
dans le spectre infrarouge de cristaux a liaison hydrogéne, dans la région des modes de vibra-
tion d’élongation X-H. Le modéle proposé est un modéle & une dimension. Les modes d’élonga-
tion X-H sont couplés & des modes d’élongation du type X—H...Y de plus basse fréquence;
en général, on ne peut plus séparer ces divers modes. Nous établissons I’hamiltonien fondamen-
tal qui déerit ce couplage et nous calculons des grandeurs telles que I'intensité, la largeur de
bande et le centre de gravité des raies du spectre de vibration d’élongation X-H.

Introduetion

The hydrogen-bond formation introduces some marked changes in the spectral
properties of systems. In particulier the X—H stretching vibration in the infrared
region shows, after hydrogen-bond formation, most characteristic changes: an
unusual big increase of the bandwidth and total intensity, a frequency shift and
a complicated fine structure [6]. These spectral changes in the X-H stretching
region are most characteristic for the hydrogen bond and serve as a principal
mean for its detection.

The understanding of these unusual spectral changes is therefore of principal
interest but for the time being rather few theoretical approaches have been pro-
posed [6, 3,7, 2].
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Many spectral investigations have been carried out for hydrogen-bonded
systems in solution where non-definite structure of the hydrogen bonded molecular
aggregates prevents any quantitative interpretation. The carboxylic acids which
form stable dimers, in gas, liquid or solid state, or imidazol, which forms linear
structures in solid state [8], may serve as a convenient example of systems with a
definite structure.

Recently, a new theoretical approach to the interpretation of the infrared
spectra of the O-H stretching modes in the hydrogen bonded carboxylic acid
dimers has been proposed by one of us (Wrrrowskr) [9]. This author points out
that in the excited O-H vibrational state, the O-H stretching modes are no
longer separable from the hydrogen bond vibrations (in the spirit of the Born-
Oppenheimer approximation), suggests the physical nature of the coupling, and
derives the fundamental hamiltonian describing the coupling of these modes.

In this note, we present a similar approach, for the coupling of X—H vibrations
with other modes (specially X...Y) in linear crystals (Fig. 1). We first establish

qn-1 qn n+i

—-~-Y—R—=X—H-~~-Y—R—X—H-—--Y—R—X—H-——-
Qn—1 Qn
site -1 sitt n site n+1
Fig. 1

the general hamiltonian describing the coupling of X-H motions with X...Y
vibrations. Then we give general expressions for the intensity, center of gravity
and bandwidth of an infrared line in the 3000 cm~! region. As we are mostly
interested in the infrared spectra of the crystal, we limit ourselves to the case
where, in the whole crystal we have no more than one X-H mode excited. Thus,
all problems of interactions between excitons will be discarded.

A Simplified Model for a Linear Crystal

Let us consider a linear crystal composed of N units which are H-bonded to-
gether (Fig. 1). In the site n lies one molecule. The X~H component of this mole-
cule is H-bonded to the Y atom of the molecule in the (n + 1)tt site. The X-H
stretching mode in the nth site will be defined by the coordinate gy, and reduced
mass m. The intermolecular stretching mode X...Y [X in the stt gite, Y in the
(n + 1)th site] will be labeled by the coordinate @, and effective mass M. P, and
Py will be the conjugate momenta of @, and ¢,. Here, we will only consider these
two kinds of modes.

The corresponding hamiltonian will be

RS =
# = 3 | Fe ot ot Van, Q)+ Pl g Q) ()

V'(qn; @n) is the oscillation potential for the X-H motion (in the ntd site) and

X...Y motion [X in the ntk site, Y in the (n + 1)t site]. ¥ stands for the interac-
tion potential between adjacent sites. This term is responsible for the bandwidth
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of the energy levels of the X-H stretching modes. We will treat it as a perburbation
term, and thus assume an exciton-like behavior for the X-H modes [4].

Let us now suppose that the vibrational eigenfunctions of the X-H stretching
mode in the nt! sire are known. They are 0*(qy, @5), Where « labels the «th eigen-
function of &y, (x = 0,1, 2...) with

7 /
hn=2T;+V(Qn,Qn)-

We have thus
ha 0%(qns @n) = E*(@n) 0*(qn, @n) -

The wave function of the crystal, with all X-H vibrations in the ground state
will be ¥} (V for vacuum, see later. ¢ labels the different states of the X...Y
modes), which may be approximated by

VY = pulq) ¥ (@)

where ¢ (and @) stand for the whole set of coordinates ¢, (and @). In the zeroth-
order approximation, g, is equal to

Pg = I;I 0%qr, Q1) -
The fanction &) (@) will thus obey the equation
S g+ B@n|a7(@ = WY 5(@).
So far we have made implicitly the approximations that

{po(g: Q) { ;;Mf— P9(¢, @ =0,

@o@ Q) | T(qns Gnte; @n) | 9ol@, @)Dg = 0;

< | y¢ means integrations over the set of coordinates gy.

Now let ¢ represent the wavefunction for the X—H vibrations in the crystal
when in all the sites except n, the X—H vibrations are in the ground state; in the
nth gite, the X—H vibration is in the first excited state. We take then, as a basis,

(g, Q) =l£[ 6%q1, @1) - 04(qn> Qn) -

Definying 68(Q;) = EXQ;) — E°(§;) we thus write

by gy = {E%Q1) + 0 E(Q1)Omi} @iy -
We furthermore make the hypothesis that

$pF | Prleide=0.

Though intuitively justified, this approximation will be studied in more details
later.

Having defined this basis of eigenfunctions for the X-H vibrations, we find it
convenient to use the second quantization formalism. If o} and @, stand for the
creation and destruction operators of an excitation of the X—H vibration at the
site n, we may then write S# in the form:
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# =3 { n 4 BQu) + SE(Qn) @ an} +
4 ? Vi@a) [a, Optq + af;l[+1 a4], (2)

V(@n) = <Q9n | V(Qn: qnt1; @n) I §0n+1>¢17

(the vacuum state is defined by 7).

The term V(@) is the equivalent of the Davydov splitting, in the electronic
spectra. In the carboxylic acid dimers, it leads to a 50 cm—! difference between the
C=0 modes which are active in the infrared and Raman spectra respectively. It is
expected that for the O-H modes in carboxylic acid dimers, and for X—H modes
in crystals, it is even more important [9].

At this stage, we make the hypothesis that the vibrations are harmonic: the
X-H vibrations with frequency w and the X...Y vibrations with frequency Q.
Furthermore, we make the simplifying assumption that when, at the site n, the
X-H vibrationnal state is in the first excited state (x = 1), then the X...Y vibra-
tion is still harmonic, with frequency 2’ = Q, but with a shift in the equilibrium

position equal to — y 112{% (y is dimensionless). As a more sophisticated assump-

tion, we could take £’ = £. This could be treated in the same way. But for simpli-
city, we shall take 2" = £ here.
We have thus:
BQn) = % M2 Q;,

OB(Qn) = o — 12 /222, .

We can then define the creation and destruction operators, b, b, for the X...Y
vibrations:

m

Q=" g 5 b + D). 3)
A is then written, in this local representation:
H =k bibatd+hodalan—yhQS BF +by) at an -+
n 7 n
+ 2 V(@n) (@ @nty + 711 an) . 4)
n

In view of the translationnal invariance of the whole crystal, it will prove
useful to define the creation and destruction operators in the reciprocal space of
the crystal. These are:

A = 1/1N > etkn gy % % etk gf
by = V—_N Sewnb, b VL_ S ¢iwn b (5)
which is equivalent with the B.V.K. boundary conditions to
ak=v%%eik"an, a{:#}:\r;e—ik”a;‘,
L DL B ol (6)
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The unit translation operator 7' is
T=expli(Dkafar+ > wbby)].
k w

Since # commutes with 7, the eigenfunctions of # will be also eigenfunctions of
T. We thus define the projection operator PX as
{4 N1
.PK = —== Tl e_ilK .
VN zgo
From the relation 7 PK = ¢fK PX, we see that PX projects any function on its com-
ponent which is an eigenfunction of 7', with eigenvalue ¢tK, ' We will then take the

one exciton eigenfunctions of # in the form PX z ] Yo>, where ¥, is a fune-

tion such that ay | ¥y> = 0 for all .
Due to the equivalence of all sites, we could have chosen, as a basis, the func-
tion PX S aff[YN-eink | ¥y>. The final result would have been exactly the same:
£

We have
;fPKz |1_rfo> PKZ %K1W0> )
where
”K=M9%(b$bw+%)+kw—77—7ggbiw+bw+
-+ {V(Q,) exp [ % w bl by] e~ 1K + exp [—¢ gw bf bw] KV (@)} .  (8)

The problem of finding the eigenvalues and eigenfunctions of 5# is then reduced
to finding the eigenvalues and eigenfunctions of #'k, which are ¥} g (we specify
now ¥, by adding the indices 7 and K ; the index ¢ labels the st eigenfunction of
k). The hamiltonian g is similar to Merrifield’s [5]. The problem which arises
in solving the problem #x | ¥} x> = K | ¢ x> originates from the non-commut
ability of the terms in V(¢),) and the term in y. It can be solved exactly in the
weak-coupling case [V(¢,) = 0] and in the strong coupling case (y = 0).

Infrared Spectra

In this section, we shall briefly study the kind of I.R. spectra (in the 3000 cm—!
region) to be expected for such a model. The detailed spectra will be published
later. We shall be interested here, in selection rules and the integral quantities of
the spectra, which are: intensity and the different moments of the spectrum. The
effect of the coupling of the X-H vibrations with the X...Y vibrations will be
most marked on the linewidth.

Selection Rule

The operator for a transition in the X—H vibrations is an electric dipole-type
operator i -1 is symmetric for the whole crystal, so that Tﬁ> == ﬁ) T (it is assumed
that the wevelength 4 of the incident light is very long, compared to the unit
translation vector. (This assumption is made for convenience, but does not at all
alter the final result.) Since the ground state for the X—H vibrations (or vacuum)
is the totally symmetrical state ¥} (we shall not consider here “hot bands”, but
the adaptation of the theory to them is straightforward), the only possible transi-
tion will be to a totally symmetrical one exciton state (K = 0). If we bad taken
into account the fact that the wavelength of the incident light is finite, then we
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would have had to consider the transitions to the state K = K, where K, is the
wavenumber vector of the light, and is very small.

From now on we shall be interested only in the totally symmetrical states
with K = 0. For convenience we shall write 7§, as ¥, and Ef as B

Ho | Py = B | Wy 9)

Transition Probability

Within a multiplicative constant, the transition probability from the ground
state Wy to the state Wi is Di:

Di—|[<¥Y | P, “’° L P [P (10)
From the closed-form (8) of 5#,, we can erte.
Pt = @y(q) & (@) ,

We have seen that P§ = @g(q) o§ (@) .
Thus

—_ d+ N
Di = [ <o | <‘P9|MP°%T%M%>Q | aivg 2.

Using the relation P° ﬁ = [TZ PO, we can write:
D= <o | fio | 6i>e I?
where
=g | 10 Z | Pgrq -
Due to the translational invariance of the Whole crystal, we could also have
written:
Di=|<of | uyexp [i 3 why byl | atyg |2

w
where

o at

@) = <po | S % & L gda

We can thus write D?, in the symmetric form:
N——
Di = <oc0 | tn exp [in Z w bl byl | aiq |2

=
where

ﬁn(Q) {pq 1 2 Z em’c I Pgoq - (11)
The total intensity of the spectrum is I = Z Dz .
i

We have thus:
N—1

I=3 o |in g | o8 (12)

with 7, ta being the adjoint operator of tin-

Successive Moments
The jtt moment of the transition is defined by

M,-:%;Di(m_ﬁ—z@)f.

9%
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The first moment (j = 1) is directly connected to the center of gravity of the line E,
and the square root of the second moment represents a measure of the absolute
value of the linewidth AE. Tt is thus interesting to find general expressions for
them.

From the definition of M;, we write:

1 Nt -> . i
M= 35 [Kof | exp[in 3 wbh bl (£ a3 -
2 = w
(b | exp (—inS wbh by) iy | o8 (13)

4 N-1 . .
M]-:T %(a},’]ﬁnexpGnZ 'wb;bw> (Y exp(—in S wbh by) ul | adde -
n= w w

This formula is quite general. We can as a particular example, suppose that
the dipolar moment 1, is equal to y for all  (independant of the X...Y coor-
dinates). We have thus:

I=Nu?
My=<od | (¥ |adde -
If we suppose, for instance, that V(@) = V,, we obtain then:

and

4B |= |y |hQ.

Conelusion

We have established the general Egs. (7) and (8) leading to the energy levels
as well as the eigenfunctions describing the states of H-bonded crystals, where the
X-H stretching vibrations are coupled to the X...Y stretching vibrations, of
lower energy. General equations have been given (11), (12), (13) for measurable
quantities found in the 3000 cm! region of the infrared spectra of these crystals.
It is believed that these equations may serve as a support for explaining the
details of the experimentally known I.R. spectra of H-bonded solids, such as imi-
dazol. This work is being completed and will be published later.
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