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A theoretical approach is proposed to explain the spectral changes in the X-H stretching 
region of hydrogen-bonded crystals. The model proposed here is restricted to a one dimen- 
sional crystal. The X-H stretching modes are supposed to be coupled to H-bond vibrations of 
lower frequency, and in general the separation of these modes is no longer possible. The 
fundamental hamiltonian describing this coupling is derived and formulae for quantities, such 
as intensity, bandwidth and center of gravity of the infrared line in the X-H stretching mode 
region are calculated. 

Es wird eine theoretische Naherung vorgesehlagen, um die Veranderung ira Infrarot- 
Spektrum yon Kristallen mit Wasserstoff-Bindungen im Bereich tier X-H-Langsschwingun- 
gen zu erkli~ren. Das vorgeschlagene Modell ist eindimensional. Die X-H-Schwingungen sind 
rait (X-H...Y)-Langsschwingungen geringerer Frequenz gekoppelt; die versehicdenen 
Schwingungstypen lassen sich i. a. nicht trennen. Der fundamentale Hamiltonoperator, der 
die Kopplung beschreibt, wird eingeffihrt, und es werden GrSBen wie Intensitat, Bandbreite 
und 1. Moment der Spektrallinien der X-H-Sehwingungen berechnet. 

Nous formulons une proposition th6orique afin d'expliquer les changeraents intervenant 
clans le spectre infrarouge de cristaux s liaison hydrog~ne, dans la r6gion des modes de vibra- 
tion d'61ongation X-H.  Le modble propos6 est un modble s une dimension. Les modes d'61onga- 
tion X-H sent coupl6s ~ des modes d'61ongation du type X - H . . .  u de plus basse fr6quence; 
en g6n6ral, on ne peut plus s6parer ces divers modes. Nous 6tablissons l'hamiltonien fondamen- 
tal qui d6erit ce couplage et hens calculons des grandeurs telles que l'intensit6, la largeur de 
bande et le centre de gravit6 des raies du spectre de vibration d'6longation X-H. 

Introduction 

The hyd rogen -bond  fo rma t ion  in t roduces  some m a r k e d  changes in the  spec t ra l  
p roper t i e s  of  systems.  I n  pa r t i cu l i e r  the  X-I- I  s t re tch ing  v ib ra t ion  in the  in f ra red  
region shows, af ter  hyd rogen -bond  format ion ,  mos t  charac ter i s t ic  changes:  an  
unusua l  big  increase of  the  b a n d w i d t h  and  to t a l  in tens i ty ,  a f requency  shif t  and  
a compl ica ted  fine s t ruc ture  [6]. These spec t ra l  changes in the  X-H s t re tch ing  
region are mos t  charac te r i s t ic  for  the  hyd rogen  bond  and  serve as a pr inc ipa l  
mean  for i ts  de tec t ion .  

The unde r s t and ing  of  these  unusua l  spec t ra l  changes is therefore  of  pr incipal  
in te res t  b u t  for the  t ime  being r a the r  few theore t ica l  approaches  have  been pro-  
posed [6, 3, 7, 2]. 

* Permanent address: Department of Theoretical Chemistry, Jagellonian University, 
Cracov, Poland. 
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Many spectral investigations have been carried out for hydrogen-bonded 
systems in solution where non-definite structure of the hydrogen bonded molecular 
aggregates prevents any quantitat ive interpretation. The carboxylic acids which 
form stable dimers, in gas, liquid or solid state, or imidazol, which forms linear 
structures in solid state [8], may  serve as a convenient example of systems with a 
definite structure. 

Recently, a new theoretical approach to the interpretation of the infrared 
spectra of the O - H  stretching modes in the hydrogen bonded carboxylic acid 
dimers has been proposed by  one of us (WIT~:OWSKI) [9]. This author points out 
tha t  in the excited O - H  vibrational state, the O - H  stretching modes are no 
longer separable from the hydrogen bond vibrations (in the spirit of the Born- 
Oppenheimer approximation), suggests the physical nature of the coupling, and 
derives the fundamental  hamfltonian describing the coupling of these modes. 

In  this note, we present a similar approach, for the coupling of X - H  vibrations 
with other modes (specially X . . .  Y) in linear crystals (Fig. 1). We first establish 

. . . .  -Y-  R - X -  H - - - - Y -  R - X -  H - - - - Y -  R - X -  H . . . .  

si~e u - 1  sire n sire u+l 

rig. I 

the general hamfltonian describing the coupling of X - H  motions with X . . . Y  
vibrations. Then we give general expressions for the intensity, center of gravity 
and bandwidth of an infrared line in the 3000 em -1 region. As we arc mostly 
interested in the infrared spectra of the crystal, we limit ourselves to the case 
where, in the whole crystal we have no more than one X - H  mode excited. Thus, 
all problems of interactions between exeitons will be discarded. 

A Simplified Hodel for a Linear Crystal 

Let  us consider a linear crystal composed of N units which are H-bonded to- 
gether (Fig. t). In  the site n lies one mo]ecnlc. The X - H  component of this mole- 
cule is H-bonded to the u a tom of the molecule in the (n § i) th site. The X - H  
stretching mode in the n th site will be defined by  the coordinate qn, and reduced 
mass m. The intermolecular stretching mode X . . .  Y [X in the nth site, Y in the 
(n + t) th site] will be labeled by the coordinate Qn and effective mass M. Pn and 
Pn will be the conjugate momenta  of Qn and qn. Here, we will only consider these 
two kinds of modes. 

The corresponding hamfltonian will be 

~ = ~ + ~ + V'(q~, q~) + ~(q~, q~+l; q . I  �9 (t1 

V'(qn, Qn) is the oscillation potential for the X - H  motion (in the nth site) and 

X . . . Y  motion [X in the n th site, u in the (n + ~.)th site]. V stands for the interac- 
tion potential between adjacent sites. This te rm is responsible for the bandwidth 
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of the energy levels of the X - H  stretching modes. We will t reat  it as a perturbation 
term, and thus assume an exeiton-like behavior for the X - H  modes [4]. 

Let  us now suppose tha t  the vibrational eigenfunctions of the X - H  stretching 
mode in the n t~ sire are known. They are O~(qn, Qn), where ~ labels the ath eigen- 
function of hn, (c~ ~ 0, 1, 2 . . . )  with 

+ v ' (qn ,  O~) .  

We have thus 

hn O~'(q,, Qn) = E~'(Qn) O~'(qn, Qn) .  

The wave function of the crystal, with all X - H  vibrations in the ground sta~e 
will be ~ i  v (V for vacuum, see later, i labels the different states of the X . . . u  
modes), which m a y  be approximated by  

~ v  = 99g(q) ~V(Q), 

where q (and Q) stand for the whole set of coordinates qn (and Qn). In  the zeroth- 
order approximation,  99g is equal to 

99g = II  O~ Ql) �9 

The function aV(Q) will thus obey the equation 

x P: wr  r<Q) 
/2M § 

So far we have made implicitly the approximations tha t  

(99g(q' Q) ~n 2M 99g(q' Q)}q ----- O, 

(99a(q, Q) I V(qn, qn+z; Qn) ] 99g(q, Q)}q = o; 

( ] }q means integrations over the set of coordinates qn. 
Now let 99+ represent the wavefunetion for the X - H  vibrations in the crystal 

when in all the sites except n, the X - H  vibrations are in the ground state;  in the 
n th site, the X - H  vibration is in the first excited state. We take then, as a basis, 

99+(q, Q) = H O~ Qz)" O*(qn, Qn) . 
l r  

Defraying OE(Qz) = E*(Q1) - E~ we thus write 

hz 99+ = {E~ + ~ E(Qt)"On~} 9 9+ �9 

We furthermore make the hypothesis tha t  

<99+ i 1 997>  = o .  

Though intuitively justified, this approximation will be studied in more details 
later. 

Having defined this basis of eigenfunctions for the X - H  vibrations, we find it 
convenient to use the second quantization formalism. I f  a + and an stand for the 
creation and destruction operators of an excitation of the X - H  vibration at  the 
site n, we m a y  then write d/d in the form: 
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~%f = ~n {[M + E~ + (~E(Qn) a+ an} + 

-~ ~ V(Qn) [a+n an+l -~ a++i an] ,  (2) 

V(Qn) = <of + I V(qn, qn+l; Qn) [ ~++l>q; 

(the vacuum state is defined by ~ ) .  
The te rm V(Qn) is the equivalent of the Da-~dov  splitting, in the electronic 

spectra. In  the carboxylic acid dimers, it leads to a 50 em - i  difference between the 
C=O modes which are active in the infrared and Raman  spectra respectively. I t  is 
expected tha t  for the O-I-I modes in carboxylie acid dimers, and for X- I{  modes 
in crystals, it is even more important  [9]. 

At this stage, we make the hypothesis tha t  the vibrations are harmonic: the 
X- I{  vibrations with frequency co and the X . . .  Y vibrations with frequency/2.  
Furthermore,  we make the simplifying assumption tha t  when, at  the site n, the 
X- t{  vibrationnal state is in the first excited state (~ = i), then the X . . .  Y vibra- 
tion is still harmonic, with frequency/2 '  = ~2, but  with a shift in the equilibrium 

position equal to -- ~ (~ is dimensionless). As a more sophisticated assump- 

tion, we could take f2' # I2. This could be treated in the same way. But  for simpli- 
city, we shall t ake /2 '  = D here. 

We have thus: 
E0(Q~) = i- M~2 Q~ 

(~E(Qn) = ha) - 7h~ 1 2 ~  t9 Qn V ~ -  " 

We can then define the creation and destruction operators, b +, bn for the X . . . Y  
vibrations : 

Qn ~ ~z + " (3) 

J~  is then written, in this local representation: 

~ = h f 2 ~ ( b + b n +  l ) + h c o ~ a + a n - - y h ~ Z ( b + + b n ) a + a n +  
~, % f$ 

+ Z V(Q~) (a + an+ i + a++i an) .  (4) 

In  view of the translationnal invariance of the whole crystal, it will prove 
useful to define the creation and destruction operators in the reciprocal space of 
the crystal. These are: 

1 t e ikn a~ 

1 

VN w 
which is equivMent with the B.V.K. boundary conditions to 

t 1 e_lk n a+ n 

t 1 e_~W ~ b+ 

9 Theoret. chim. Acta (Bed.) Vol. 9 
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The unit translation operator T is 

= exp [i ( 5  k ~k + ~ ,  + 5 w b~ + bw)]. 
k w 

Since Yf commutes with T, the eigenfunctions of W will be also eigenfunctions of 
T. We thus define the projection operator pK as 

1/~ ~ffio 
From the relation T P  g = e tg px ,  we see that  P g  projects any function on its com- 
ponent which is an eigenfunction of T, with eigenvalue e ~/r We will then take the 

a,+ 
one exciton eigenfunctions of ~ in the form pK ~ ~ I ~0>, where ~0 is a func- 

tion such that  a~ I We> = 0 for all k. 
Due to the equivalence of all sites, we could have chosen, as a basis, the func- 

tion pK ~. a+/V~.dn~[~o}" The final result would have been exactly the same: 
k 

We have 

t + e . ~  a + + 

where 

~ K = h Q ~  + r ~  + w ( b ' ~ b w § 1 8 9 2 4 7 1 7 6  -~b-w+bw§ 

+ {V(Qo) exp [i ~ w b+~ bw] e-~K + exp [ - - i  V~ ~ b+~ bw] e ~  V(Q0)} �9 (s) 
w 

The problem of finding the eigenvalues and eigenfunctions of ~ f  is then reduced 
to finding the eigenvalues and eigenfunctions of YfK, which are kY~, K (we specify 
now k~ o by adding the indices i and K;  the index i labels the i th eigenfunction of 
5~/~.). The hamiltonian WfK is similar to Merrifield's [5]. The problem which arises 

i �9 i �9 in soh4ng the problem YfK I T~,K> = E~  [ ~I~,K) originates from the non-commut 
ability of the terms in V(Qo) and the term in y. I t  can be solved exactly in the 
weak-coupling case IV(Q0) = 0] and in the strong coupling case (~ : 0). 

Infrared Spectra 
In this section, we shall briefly study the kind of 1.1%. spectra (in the 3000 cm -1 

region) to be expected for such a model. The detailed spectra will be published 
later. We shall be interested here, in selection rules and the integral quantities of 
the spectra, which are : intensity and the different moments of the spectrum. The 
effect of the coupling of the X - H  vibrations with the X . . .  u vibrations will be 
most marked on the linewidth. 

Selection Rule 
The operator for a transition in the X-I~ vibrations is an electric dipole-type 

operator #+.# + is symmetric for the whole crystal, so that  T/~+ =/z+T (it is assumed 
that  the wevelength ~ of the incident light is very long, compared to the unit 
translation vector. (This assumption is made for convenience, but  does not at all 
alter the final result.) Since the ground state for the X - H  vibrations (or vacuum) 
is the totally symmetrical state ~0 v (we shall not consider here "hot  bands", but  
the adaptation of the theory to them is straightforward), the only possible transi- 
tion ~_ll be to a totally symmetrical one exciton state (K = 0). I f  we had taken 
into account the fact tha t  the wavelength of the incident light is finite, then we 
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would have had  to  consider the transit ions to the state K = K0, where K o is the 
wavenumber  vector  of  the  light, and is very  small. 

F r o m  now on we shall be interested tufty in the tota l ly  symmetr ical  states 
with K = 0. For  convenience we shall write ~P~,0 as T~, and E~ as E~: 

#fo I T~} = E ~ I T ~ } -  (9) 

Transition Probability 

Within  a multiplicative constant ,  the transi t ion probabi l i ty  f rom the ground 
state Wo v to the state W~ is D ~ : 

~ 2  ~'%,Q I ~ . (~0) 

From the closed-form (8) of  ~ o ,  we can write : 

T~ = ~g(q) ~ (Q), 

We have seen t h a t  ~_/v _ ~@(q) c%V(Q) . 
Thus  

+ o ~ . a ,  + I~ D~ = [ <~o ~ I < ~  [ ~ P  ~ ~ I ~>~  I ~'>Q �9 
0-4" Using the relation P # = ~ p o  we can write : 

where 

Due to  the translat ional  invariance of  the whole crystal,  we could also have 
w r i t t e n :  

Dt -= 1 <ao v [ ~1 exp [i E wb+ bw] ] a~>Q [2 
w 

where 
--)- /-] a "l- 

We can thus write D ~, in the symmetr ic  form:  
N - - 1  

D ~ =  ~ < a o  v ] ~ n e x p [ i n ~ w b  + 
~ 0  W 

where 

The tota l  intensi ty of  the spectrum is I = ~ D i . 
i 

We have thus :  

E <~o ~ [+ .++ 

with #+n + being the adjoint  operator of  ~n .  

~g>q. 

bdl~% ? 

[~g>q. (i~) 

(12) 

9* 

Successive _Moments 

The jth momen t  of  the transi t ion is defined by  
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The first momen t  (] = i) is directly connected to  the center of  g rav i ty  of the line E,  
and the square root  of  the second momen t  represents a measure of  the absolute 
value of  the linewidth AE. I t  is thus interesting to find general expressions for 
them. 

F r o m  the defiuition of  My, we write : 

] Mj = 7 ~ .=o~ I<o~g t ~ .  exp i,~ ~ b~ + bw (~o)J I o , % .  

�9 <~i ] exp ( - i n Z w b + b w )  ~+ #n ]aoV>Q (13) 
w 

Mj = u s <~0 v 1 ~  exp i ~ ~ b~ + b~ (~r0)J e x p ( -  i ~ 2 w b~ + b~) ~. ~+ l ~0~>~. 
~ 0  W 

This formula is quite general. We can as a part icular  example, suppose tha t  
the dipolar momen t /~v  is equal to  ~ for all p ( independant of  the X . . . Y  coor- 
dinates). We have thus :  

I =  N~ 2 

I f  we suppose, for instance, t ha t  V(Q ~ = V o, we obtain then : 

= M 1 = h ~o + Vo 
and  

I d z l =  [ r [ ~  

Conclusion 

We have established the general Eqs. (7) and (8) leading to the energy levels 
as well as the eigenfunctions describing the states of  H-bonded  crystals, where the 
X-I-I  s tretching vibrat ions are coupled to the  X . . . u  stretching vibrations, of  
lower energy. General equations have been given ( l i ) ,  (i2), (i3) for measurable 
quanti t ies found in the 3000 cm -1 region of  the infrared spectra of  these crystals. 
I t  is believed tha t  these equat ions m a y  serve as a support  for explaining the 
details of  the experimental ly known I .R.  spectra of  H-bonded  solids, such as imi- 
dazol. This work is being completed and will be published later. 
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